Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide

Abstract

Nuclear power could continue to be a reliable and carbon-free energy source at least from a near-term perspective. In addition to the safety issues, another risk that may threaten the sustainability of this technology is the uranium supply disruption. As opposed to the land-based deposits, the ocean contains 1,000 times more uranium reserves and provides a more abundant resource for uranium. However, due to the very low concentration and presence of many other metal ions as well as the accumulation of microorganisms, the development of uranium extraction technology faces enormous challenges. Here we report a bifunctional polymeric peptide hydrogel that shows not only strong affinity to and selectivity for uranium in seawater but also remarkable resistance against biofouling. Detailed characterizations reveal that the amino acid in this peptide material serves as the binding ligand, and uranyl is exclusively bound to the oxygen atoms. Benefiting from its broad-spectrum antimicrobial activity, the present polymeric adsorbent can inhibit the growth of approximately 99% of marine microorganisms. Measurements in natural seawater show that this peptide material delivers an impressive extraction capacity of 7.12 mg g−1 and can be reused. This work opens a new direction for the design of low-cost and sustainable materials for obtaining nuclear fuel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization and uranium adsorption capacity of PPH-OP.
Fig. 2: Antibiofouling activity and uranium extraction capacity in natural seawater.
Fig. 3: EXAFS analysis and DFT calculations of the uranium binding mechanism.
Fig. 4: Schematic diagram of the uranyl binding and antibiofouling mechanisms of PPH-OP.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the paper and its Supplementary Information.

References

  1. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    CAS  Google Scholar 

  2. Peng, W. et al. Managing China’s coal power plants to address multiple environmental objectives. Nat. Sustain. 1, 693–701 (2018).

    Article  Google Scholar 

  3. DeRolph, C. R., McManamay, R. A., Morton, A. M. & Nair, S. S. City energysheds and renewable energy in the United States. Nat. Sustain. 2, 412–420 (2019).

    Article  Google Scholar 

  4. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  Google Scholar 

  5. Dye, S. T. & Guillian, E. H. Estimating terrestrial uranium and thorium by antineutrino flux measurements. Proc. Natl Acad. Sci. USA 105, 44–47 (2008).

    Article  CAS  Google Scholar 

  6. Abney, C. W., Mayes, R. T., Saito, T. & Dai, S. Materials for the recovery of uranium from seawater. Chem. Rev. 117, 13935–14013 (2017).

    Article  CAS  Google Scholar 

  7. Davies, R. V., Kennedy, J., Mcilroy, R. W., Spence, R. & Hill, K. M. Extraction of uranium from sea water. Nature 203, 1110–1115 (1964).

    Article  Google Scholar 

  8. Xu, X. et al. 3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater. Energy Environ. Sci. 12, 1979–1988 (2019).

    Article  CAS  Google Scholar 

  9. Sun, Q. et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv. Mater. 30, 1705479 (2018).

    Article  CAS  Google Scholar 

  10. Das, S. et al. Novel poly(imide dioxime) sorbents: development and testing for enhanced extraction of uranium from natural seawater. Chem. Eng. J. 298, 125–135 (2016).

    Article  CAS  Google Scholar 

  11. Luo, W. et al. Engineering robust metal-phenolic net work membranes for uranium extraction from seawater. Energy Environ. Sci. 12, 607–614 (2019).

    Article  CAS  Google Scholar 

  12. Chen, Z. et al. N, P, and S codoped graphene-like carbon nanosheets for ultrafast uranium (VI) capture with high capacity. Adv. Sci. 5, 1800235 (2018).

    Article  CAS  Google Scholar 

  13. Liang, P. L. et al. Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light. Appl. Catal. B 267, 118688 (2020).

    Article  CAS  Google Scholar 

  14. Yuan, Y. et al. Molecularly imprinted porous aromatic frameworks and their composite components for selective extraction of uranium ions. Adv. Mater. 30, 1706507 (2018).

    Article  CAS  Google Scholar 

  15. Sun, Q. et al. Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste. Nat. Commun. 9, 1644 (2018).

    Article  CAS  Google Scholar 

  16. Chong, L. et al. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat. Energy 2, 17007 (2017).

    Article  CAS  Google Scholar 

  17. Cui, W. R. et al. Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nat. Commun. 11, 436 (2020).

    Article  CAS  Google Scholar 

  18. Sun, Q. et al. Spatial engineering direct cooperativity between binding sites for uranium sequestration. Adv. Sci. 7, 2001573 (2020).

    Google Scholar 

  19. Qin, Y. et al. Flexibility and intensity of global water use. Nat. Sustain. 2, 515–523 (2019).

    Article  Google Scholar 

  20. Kou, S., Yang, Z. & Sun, F. Protein hydrogel microbeads for selective uranium mining from seawater. ACS Appl. Mater. Interfaces 9, 2035–2039 (2017).

    Article  CAS  Google Scholar 

  21. Lejars, M., Margaillan, A. & Bressy, C. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem. Rev. 112, 4347–4390 (2012).

    Article  CAS  Google Scholar 

  22. Kuo, L. J. et al. Characterization and testing of amidoxime-based adsorbent materials to extract uranium from natural seawater. Ind. Eng. Chem. Res. 55, 4285–4293 (2016).

    Article  CAS  Google Scholar 

  23. Ivanov, A. S. et al. Origin of the unusually strong and selective binding of vanadium by polyamidoximes in seawater. Nat. Commun. 8, 1560 (2017).

    Article  CAS  Google Scholar 

  24. Brown, S. et al. Uranium adsorbent fibers prepared by atom-transfer radical polymerization (ATRP) from poly(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. Ind. Eng. Chem. Res. 55, 4139–4148 (2016).

    Article  CAS  Google Scholar 

  25. Gill, G. A. et al. The uranium from seawater program at the Pacific Northwest National Laboratory: overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies. Ind. Eng. Chem. Res. 55, 4264–4277 (2016).

    Article  CAS  Google Scholar 

  26. Park, J. et al. Effect of biofouling on the performance of amidoxime-based polymeric uranium adsorbents. Ind. Eng. Chem. Res. 55, 4328–4338 (2016).

    Article  CAS  Google Scholar 

  27. Sun, G. L., Reynolds, E. E. & Belcher, A. M. Using yeast to sustainably remediate and extract heavy metals from waste waters. Nat. Sustain. 3, 303–311 (2020).

    Article  Google Scholar 

  28. Wang, X. M. et al. A 3,2-hydroxypyridinone-based decorporation agent that removes uranium from bones in vivo. Nat. Commun. 10, 2570 (2019).

    Article  CAS  Google Scholar 

  29. Zhou, L. et al. A protein engineered to bind uranyl selectively and with femtomolar affinity. Nat. Chem. 6, 236–241 (2014).

    Article  CAS  Google Scholar 

  30. Bai, Z. et al. Mussel-inspired anti-biofouling and robust hybrid nanocomposite hydrogel for uranium extraction from seawater. J. Hazard. Mater. 381, 120984 (2019).

    Article  CAS  Google Scholar 

  31. Yu, Q. H. et al. A universally applicable strategy for construction of anti-biofouling adsorbents for enhanced uranium recovery from seawater. Adv. Sci. 6, 1900002 (2019).

    Article  CAS  Google Scholar 

  32. Byers, M. F., Landsberger, S. & Schneider, E. The use of silver nanoparticles for the recovery of uranium from seawater by means of biofouling mitigation. Sustain. Energ. Fuels 2, 2303–2313 (2018).

    Article  CAS  Google Scholar 

  33. Yuan, Y. H. et al. Ultrafast recovery of uranium from seawater by Bacillus velezensis strain UUS-1 with innate anti-biofouling activity. Adv. Sci. 6, 1900961 (2019).

    Article  CAS  Google Scholar 

  34. Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238–250 (2005).

    Article  CAS  Google Scholar 

  35. Sapra, R. et al. Designer peptide and protein dendrimers: a cross-sectional analysis. Chem. Rev. 119, 11391–11441 (2019).

    Article  CAS  Google Scholar 

  36. Sader, H. S., Fedler, K. A., Rennie, R. P., Stevens, S. & Jones, R. N. Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob. Agents Chemother. 48, 3112–3118 (2004).

    Article  CAS  Google Scholar 

  37. Melo, M. N. & Castanho, M. A. R. B. Omiganan interaction with bacterial membranes and cell wall models. Assigning a biological role to saturation. Biochim. Biophys. Acta 1768, 1277–1290 (2007).

    Article  CAS  Google Scholar 

  38. Rubinchik, E., Dugourd, D., Algara, T., Pasetka, C. & Friedland, H. D. Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int. J. Antimicrob. Agents 34, 457–461 (2009).

    Article  CAS  Google Scholar 

  39. Rozek, A., Powers, J. P., Friedrich, C. L. & Hancock, R. E. Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry 42, 14130–14138 (2003).

    Article  CAS  Google Scholar 

  40. Wang, X. et al. Melamine modified graphene hydrogels for the removal of uranium(VI) from aqueous solution. New J. Chem. 41, 10899–10907 (2017).

    Article  CAS  Google Scholar 

  41. Yuan, Y. H. et al. Ultrafast and highly selective uranium extraction from seawater by hydrogel-like spidroin-based protein fiber. Angew. Chem. Int. Ed. Engl. 58, 11785–11790 (2019).

    Article  CAS  Google Scholar 

  42. Yuan, Y. H. et al. DNA nano-pocket for ultra-selective uranyl extraction from seawater. Nat. Commun. 11, 5708 (2020).

    Article  CAS  Google Scholar 

  43. Ma, C. et al. Sunlight polymerization of poly(amidoxime) hydrogel membrane for enhanced uranium extraction from seawater. Adv. Sci. 6, 1900085 (2019).

    Article  CAS  Google Scholar 

  44. Das, S. et al. Extracting uranium from seawater: promising AF series adsorbents. Ind. Eng. Chem. Res. 55, 4110–4117 (2016).

    Article  CAS  Google Scholar 

  45. Abney, C. W. et al. XAFS investigation of polyamidoxime-bound uranyl contests the paradigm from small molecule studies. Energy Environ. Sci. 9, 448–453 (2016).

    Article  CAS  Google Scholar 

  46. Schneider, E. & Sachde, D. The cost of recovering uranium from seawater by a braided polymer adsorbent system. Sci. Glob. Secur. 21, 134–163 (2013).

    Article  Google Scholar 

  47. Pawlas, J. et al. Sustainable, cost-efficient manufacturing of therapeutic peptides using chemo-enzymatic peptide synthesis (CEPS). Green Chem. 21, 6451–6467 (2019).

    Article  CAS  Google Scholar 

  48. Kim, J. et al. Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment. Ind. Eng. Chem. Res. 53, 6076–6083 (2014).

    Article  CAS  Google Scholar 

  49. Lindner, H. & Schneider, E. Review of cost estimates for uranium recovery from seawater. Energy Econ. 49, 9–22 (2015).

    Article  Google Scholar 

  50. Uranium Price (Cameco, 2020); https://www.cameco.com/invest/markets/uranium-price

Download references

Acknowledgements

This work was supported by the Hainan Science and Technology Major Project (ZDKJ2019013 and ZDKJ2020011), the National Natural Science Foundation of China (41966009, U1967213, 51775152 and 61761016), the Hainan Provincial Natural Science Foundation of China (2019CXTD401) and the National Key R&D programme of China (2018YFE0103500).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y., Q.Y. and N.W. conceived the research and designed the experiments. Q.Y., M.C., L.F., S.F., T.L., T.F. and B.Y. carried out the experiment. All authors analysed the data. Y.Y., N.W. and Z.G. contributed to the project discussions. Y.Y., Q.Y. and N.W. wrote the paper.

Corresponding author

Correspondence to Ning Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Shengqian Ma, Shuao Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, Tables 1–7, and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Yu, Q., Cao, M. et al. Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide. Nat Sustain 4, 708–714 (2021). https://doi.org/10.1038/s41893-021-00709-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-021-00709-3

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene